Explore Scientific Method and Analysis (SMA) WAYS Courses

Ways of Thinking/Ways of Doing

Title Requirements
BIOC 109A
Extending Life by Controlling Chronic Disease (BIO 109A, BIOC 209A, HUMBIO 158)
GER: DB-NatSci, WAY-SMA

The variability of the human genome and the role of genomic information in research, drug discovery, and human health. Concepts and interpretations of genomic markers in medical research and real life applications. Human genomes in diverse populations. Original contributions from thought leaders in academia and industry and interaction between students and guest lecturers. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.

BIOC 109A
The Human Genome and Disease (BIO 109A, BIOC 209A, HUMBIO 158)
GER: DB-NatSci, WAY-SMA

The variability of the human genome and the role of genomic information in research, drug discovery, and human health. Concepts and interpretations of genomic markers in medical research and real life applications. Human genomes in diverse populations. Original contributions from thought leaders in academia and industry and interaction between students and guest lecturers. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.

BIOC 109B
The Human Genome and Disease: Genetic Diversity and Personalized Medicine (BIO 109B)
GER: DB-NatSci, WAY-SMA

Continuation of 109A/209A. Genetic drift: the path of human predecessors out of Africa to Europe and then either through Asia to Australia or through northern Russia to Alaska down to the W. Coast of the Americas. Support for this idea through the histocompatibility genes and genetic sequences that predispose people to diseases. Guest lectures from academia and pharmaceutical companies. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.

BIOC 109B
Advances in Therapeutic Development: Neuronal Signaling and Immunology (BIO 109B)
GER: DB-NatSci, WAY-SMA

This is a seminar course focused on teaching students about novel research and applications in the fields of neuroscience and immunology. The course will cover topics that range from the neuronal pathways in opioid addiction and the mechanics of pain, to advances in immunotherapy. Students will engage with diverse material from leading neuroscience and cancer immunotherapy experts in the Bay Area. Guest lecturers will visit from both academia and neighboring pharmaceutical/biotechnology companies. Active participation is required. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program, but not both.

BIOC 109B
The Human Genome and Disease: Genetic Diversity and Personalized Medicine (BIO 109B)
GER: DB-NatSci, WAY-SMA

Continuation of 109A/209A. Genetic drift: the path of human predecessors out of Africa to Europe and then either through Asia to Australia or through northern Russia to Alaska down to the W. Coast of the Americas. Support for this idea through the histocompatibility genes and genetic sequences that predispose people to diseases. Guest lectures from academia and pharmaceutical companies. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program but not both.

BIOE 102
Physical Biology of Macromolecules
WAY-AQR, WAY-SMA

Principles of statistical physics, thermodynamics, and kinetics with applications to molecular biology. Topics include entropy, temperature, chemical forces, enzyme kinetics, free energy and its uses, self assembly, cooperative transitions in macromolecules, molecular machines, feedback, and accurate replication. Prerequisites: MATH 19, 20, 21; CHEM 31A, B (or 31X); strongly recommended: PHYSICS 41, CME 100 or MATH 51, and CME 106; or instructor approval.

BIOE 103
Systems Physiology and Design
WAY-AQR, WAY-SMA

Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics.  Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs.  Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84.

BIOE 103
Systems Physiology and Design
WAY-AQR, WAY-SMA

Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics.  Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs.  Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84.

BIOE 103
Systems Physiology and Design
WAY-AQR, WAY-SMA

Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics.  Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs.  Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84.

BIOE 103B
Systems Physiology and Design
WAY-AQR, WAY-SMA

*ONLINE Offering of BIOE 103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE 103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84. strongly recommended PHYSICS 43. Enrollment with Instructor approval

BIOE 103B
Systems Physiology and Design
WAY-AQR, WAY-SMA

*ONLINE Offering of BIOE 103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE 103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84. strongly recommended PHYSICS 43. Enrollment with Instructor approval

BIOE 103B
Systems Physiology and Design
WAY-AQR, WAY-SMA

*ONLINE Offering of BIOE 103. This pilot class, BIOE103B, is an entirely online offering with the same content, learning goals, and prerequisites as BIOE 103. Students attend class by watching videos and completing assignments remotely. Students may attend recitation and office hours in person, but cannot attend the BIOE103 in-person lecture due to room capacity restraints.* Physiology of intact human tissues, organs, and organ systems in health and disease, and bioengineering tools used (or needed) to probe and model these physiological systems. Topics: Clinical physiology, network physiology and system design/plasticity, diseases and interventions (major syndromes, simulation, and treatment, instrumentation for intervention, stimulation, diagnosis, and prevention), and new technologies including tissue engineering and optogenetics. Discussions of pathology of these systems in a clinical-case based format, with a view towards identifying unmet clinical needs. Learning computational skills that not only enable simulation of these systems but also apply more broadly to biomedical data analysis. Prerequisites: CME 102; PHYSICS 41; BIO 82, BIO 84. strongly recommended PHYSICS 43. Enrollment with Instructor approval

BIOE 123
Biomedical System Prototyping Lab
WAY-SMA

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics. n nLearning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, microcontrollers, and oscilloscopes. 3) Create quantitative system specifications and test measurement plans to demonstrate that a design meets user requirements. 4) Communicate design elements, choices, specifications, and performance through design reviews and written reports. 5) Collaborate as a team member on a complex system design project (e.g., a fermenter). n nLimited enrollment, with priority for Bioengineering undergraduates. Prerequisites: Physics 43, or equivalent. Experience with Matlab and/or Python is recommended.

BIOE 123
Bioengineering Systems Prototyping Lab
WAY-SMA

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics. n nLearning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, microcontrollers, and oscilloscopes. 3) Create quantitative system specifications and test measurement plans to demonstrate that a design meets user requirements. 4) Communicate design elements, choices, specifications, and performance through design reviews and written reports. 5) Collaborate as a team member on a complex system design project (e.g., a fermenter). n nLimited enrollment, with priority for Bioengineering undergraduates. Prerequisites: Physics 43, or equivalent. Experience with Matlab and/or Python is recommended.

BIOE 123
Biomedical System Prototyping Lab
WAY-SMA

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics. n nLearning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, microcontrollers, and oscilloscopes. 3) Create quantitative system specifications and test measurement plans to demonstrate that a design meets user requirements. 4) Communicate design elements, choices, specifications, and performance through design reviews and written reports. 5) Collaborate as a team member on a complex system design project (e.g., a fermenter). n nLimited enrollment, with priority for Bioengineering undergraduates. Prerequisites: Physics 43, or equivalent. Experience with Matlab and/or Python is recommended.

BIOE 158
Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (MATSCI 158)
WAY-AQR, WAY-SMA

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended: ENGR 50 and Chem 31A or equivalent.

BIOE 158
Soft Matter in Biomedical Devices, Microelectronics, and Everyday Life (CHEMENG 160, MATSCI 158)
WAY-AQR, WAY-SMA

The relationships between molecular structure, morphology, and the unique physical, chemical, and mechanical behavior of polymers and other types of soft matter are discussed. Topics include methods for preparing synthetic polymers and examination of how enthalpy and entropy determine conformation, solubility, mechanical behavior, microphase separation, crystallinity, glass transitions, elasticity, and linear viscoelasticity. Case studies covering polymers in biomedical devices and microelectronics will be covered. Recommended: ENGR 50 and Chem 31A or equivalent.

BIOE 42
Physical Biology
WAY-AQR, WAY-SMA

BIOE 42 is designed to introduce students to general engineering principles that have emerged from theory and experiments in biology. Topics covered will cover the scales from molecules to cells to organisms, including fundamental principles of entropy, diffusion, and continuum mechanics. These topics will link to several biological questions, including DNA organization, ligand binding, cytoskeletal mechanics, and the electromagnetic origin of nerve impulses. In all cases, students will learn to develop toy models that can explain quantitative measurements of the function of biological systems. Prerequisites: MATH 19, 20, 21 CHEM 31A, B (or 31X), PHYSICS 41; strongly recommended: CS 106A, CME 100 or MATH 51, and CME 106; or instructor approval.

BIOE 42
Physical Biology
WAY-AQR, WAY-SMA

BIOE 42 is designed to introduce students to general engineering principles that have emerged from theory and experiments in biology. Topics covered will cover the scales from molecules to cells to organisms, including fundamental principles of entropy, diffusion, and continuum mechanics. These topics will link to several biological questions, including DNA organization, ligand binding, cytoskeletal mechanics, and the electromagnetic origin of nerve impulses. In all cases, students will learn to develop toy models that can explain quantitative measurements of the function of biological systems. Prerequisites: MATH 19, 20, 21 CHEM 31A, B (or 31X), PHYSICS 41; strongly recommended: CS 106A, CME 100 or MATH 51, and CME 106; or instructor approval.

BIOE 42
Physical Biology
WAY-AQR, WAY-SMA

BIOE 42 is designed to introduce students to general engineering principles that have emerged from theory and experiments in biology. Topics covered will cover the scales from molecules to cells to organisms, including fundamental principles of entropy, diffusion, and continuum mechanics. These topics will link to several biological questions, including DNA organization, ligand binding, cytoskeletal mechanics, and the electromagnetic origin of nerve impulses. In all cases, students will learn to develop toy models that can explain quantitative measurements of the function of biological systems. Prerequisites: MATH 19, 20, 21 CHEM 31A, B (or 31X), PHYSICS 41; strongly recommended: CS 106A, CME 100 or MATH 51, and CME 106; or instructor approval.

BIOE 44
Fundamentals for Engineering Biology Lab
WAY-SMA

Introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lab modules build upon current research including: gene and genome engineering via decoupled design and construction of genetic material; component engineering focusing on molecular design and quantitative analysis of experiments; device and system engineering using abstracted genetically encoded objects; and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83.

BIOE 44
Fundamentals for Engineering Biology Lab
WAY-SMA

Introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lab modules build upon current research including: gene and genome engineering via decoupled design and construction of genetic material; component engineering focusing on molecular design and quantitative analysis of experiments; device and system engineering using abstracted genetically encoded objects; and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83.

BIOE 44
Fundamentals for Engineering Biology Lab
WAY-SMA

Introduction to next-generation techniques in genetic, molecular, biochemical, and cellular engineering. Lab modules build upon current research including: gene and genome engineering via decoupled design and construction of genetic material; component engineering focusing on molecular design and quantitative analysis of experiments; device and system engineering using abstracted genetically encoded objects; and product development based on useful applications of biological technologies. Concurrent or previous enrollment in BIO 82 or BIO 83.

BIOHOPK 14
Bio-logging and Bio-telemetry
WAY-AQR, WAY-SMA

Bio-logging is a rapidly growing discipline that includes diverse fields such as consumer electronics, medicine, and marine biology. The use of animal-attached digital tags is a powerful approach to study the movement and ecology of individuals over a wide range of temporal and spatial scales. This course is an introduction to bio-logging methods and analysis. Using whales as a model system, students will learn how use multi-sensor tags to study behavioral biomechanics.

BIOHOPK 150H
Ecological Mechanics (BIOHOPK 250H)
WAY-SMA

(Graduate students register for 250H.) The principles of life's physical interactions. We will explore basic physics. fluid mechanics, thermal dynamics, and materials science to see how the principles of these fields can be used to investigate ecology at levels from the individual to the community. Topics include: diffusion, boundary layers, fluid-dynamic forces, locomotion, heat-budget models, fracture mechanics, adhesion, beam theory, the statistics of extremes, and the theory of self-organization. Open to students from all backgrounds. Some familiarity with basic physics and calculus advantageous but not necessary.

BIOHOPK 161H
Invertebrate Zoology (BIOHOPK 261H)
GER: DB-NatSci, WAY-SMA

(Graduate students register for 261H.) Survey of invertebrate diversity emphasizing form and function in a phylogenetic framework. Morphological diversity, life histories, physiology, and ecology of the major invertebrate groups, concentrating on local marine forms as examples. Current views on the phylogenetic relationships and evolution of the invertebrates. Lectures, lab, plus field trips. Satisfies Central Menu Area 3 for Bio majors.

BIOHOPK 175H
Marine Science and Conservation in a Changing World (BIOHOPK 275H)
WAY-AQR, WAY-SMA

Graduate students register for 275H. This hands-on, experiential course provides a broad foundation in marine science, and explores emerging opportunities for innovation in the study of life in the sea. Students are resident at Stanfords Hopkins Marine Station in Pacific Grove (90 miles south of main campus) where the diverse organisms and environments of Monterey Bay provide the focus for the course. Class meets daily with lectures, discussions, labs, and field work throughout the day. Three linked concentrations¿each 3 weeks long¿are taught sequentially to address (1) the extraordinary diversity of marine organisms and habitats, (2) the physiology and behavior of marine animals, and (3) the principles of marine ecology. Connecting these concentrations is a weekly seminar-based discussion of topics in marine conservation. This design permits deep concentration on each subject, and places emphasis on discussion, group dialog, individual exploration, and experiential learning. In the final week of the quarter, students complete an individual capstone project of their choosing. For the Biology major, this course fulfills the same requirements as BIO 47 and BIO 81. Satisfies WIM in Biology.

BIOHOPK 182H
Stanford at Sea (BIOHOPK 323H, EARTHSYS 323, ESS 323)
GER: DB-NatSci, WAY-SMA

(Graduate students register for 323H.) Five weeks of marine science including oceanography, marine physiology, policy, maritime studies, conservation, and nautical science at Hopkins Marine Station, followed by five weeks at sea aboard a sailing research vessel in the Pacific Ocean. Shore component comprised of three multidisciplinary courses meeting daily and continuing aboard ship. Students develop an independent research project plan while ashore, and carry out the research at sea. In collaboration with the Sea Education Association of Woods Hole, MA. Only 6 units may count towards the Biology major.

BIOHOPK 185H
Ecology and Conservation of Kelp Forest Communities (BIOHOPK 285H)
WAY-SMA

(Graduate students register for 285H.) Five week course. Daily lectures, labs, and scuba dives focused on scientific diving and quantitative ecological methods in kelp forests.. Topics include identification and natural history of resident organisms, ecological processes, and subtidal field techniques. Class projects contribute to long-term monitoring at Hopkins Marine Station. It is recommended (but not required) that students complete the Stanford Scientific Diver Training session, typically offered prior to the start of the course. Prerequisites: consent of instructor; rescue scuba certification and scuba equipment.

BIOHOPK 47
Introduction to Research in Ecology and Ecological Physiology
GER: DB-NatSci, WAY-SMA

This course is a field-based inquiry into rocky intertidal shores that introducesnstudents to ecology and environmental physiology and the research methods used to study them. Students will learn how to detect patterns quantitatively in nature through appropriate sampling methods & statistical analysis. Following exploration of appropriate background material in class and through exploration of the scientific literature, students will learn how to formulate testable hypotheses regarding the underlying causes of the patterns they discern. A variety of different aspects of ecology and physiology will be investigated cooperatively by the students during the quarter, culminating in development of an individual final paper in the form of a research proposal based on data collected during the course. The course will provide a broad conceptual introduction to the underlying biological principles that influence adaptation to the planet¿s dynamic habitats, as well as inquiry-based experience in how to explore and understand complex systems in nature. nThis course fulfills the same laboratory requirement as BIO 47. Satisfies WIM in Biology.

BIOHOPK 47
Introduction to Research in Ecology and Ecological Physiology
GER: DB-NatSci, WAY-SMA

This course is a field-based inquiry into rocky intertidal shores that introducesnstudents to ecology and environmental physiology and the research methods used to study them. Students will learn how to detect patterns quantitatively in nature through appropriate sampling methods & statistical analysis. Following exploration of appropriate background material in class and through exploration of the scientific literature, students will learn how to formulate testable hypotheses regarding the underlying causes of the patterns they discern. A variety of different aspects of ecology and physiology will be investigated cooperatively by the students during the quarter, culminating in development of an individual final paper in the form of a research proposal based on data collected during the course. The course will provide a broad conceptual introduction to the underlying biological principles that influence adaptation to the planet¿s dynamic habitats, as well as inquiry-based experience in how to explore and understand complex systems in nature. nThis course fulfills the same laboratory requirement as BIO 47. Satisfies WIM in Biology.

CEE 174A
Providing Safe Water for the Developing and Developed World
WAY-SMA

This course will cover basic hydraulics and the fundamental processes used to provide and control water, and will introduce the basics of engineering design. In addition to understanding the details behind the fundamental processes, students will learn to feel comfortable developing initial design criteria (30% designs) for fundamental processes. Students should also develop a feel for the typical values of water treatment parameters and the equipment involved. The course should enable students to work competently in environmental engineering firms or on non-profit projects in the developing world such as Engineers without Borders. Pre-requisite: Chem31B/X.

CEE 174A
Providing Safe Water for the Developing and Developed World
WAY-SMA

This course will cover basic hydraulics and the fundamental processes used to provide and control water, and will introduce the basics of engineering design. In addition to understanding the details behind the fundamental processes, students will learn to feel comfortable developing initial design criteria (30% designs) for fundamental processes. Students should also develop a feel for the typical values of water treatment parameters and the equipment involved. The course should enable students to work competently in environmental engineering firms or on non-profit projects in the developing world such as Engineers without Borders. Pre-requisite: Chem31B/M.

CEE 174A
Providing Safe Water for the Developing and Developed World
WAY-SMA

This course will cover basic hydraulics and the fundamental processes used to provide and control water, and will introduce the basics of engineering design. In addition to understanding the details behind the fundamental processes, students will learn to feel comfortable developing initial design criteria (30% designs) for fundamental processes. Students should also develop a feel for the typical values of water treatment parameters and the equipment involved. The course should enable students to work competently in environmental engineering firms or on non-profit projects in the developing world such as Engineers without Borders. Pre-requisite: Chem31B/X.

CEE 177
Aquatic Chemistry and Biology
GER:DB-EngrAppSci, WAY-SMA

Introduction to chemical and biological processes in the aqueous environment. Basic aqueous equilibria; the structure, behavior, and fate of major classes of chemicals that dissolve in water; redox reactions; the biochemistry of aquatic microbial life; and biogeochemical processes that govern the fate of nutrients and metals in the environment and in engineered systems. Prerequisite: CHEM 31.

CEE 177
Aquatic Chemistry and Biology
GER:DB-EngrAppSci, WAY-SMA

Introduction to chemical and biological processes in the aqueous environment. Basic aqueous equilibria; the structure, behavior, and fate of major classes of chemicals that dissolve in water; redox reactions; the biochemistry of aquatic microbial life; and biogeochemical processes that govern the fate of nutrients and metals in the environment and in engineered systems. Prerequisite: CHEM 31.

CEE 178
Introduction to Human Exposure Analysis (CEE 276)
GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

(Graduate students register for 276.) Scientific and engineering issues involved in quantifying human exposure to toxic chemicals in the environment. Pollutant behavior, inhalation exposure, dermal exposure, and assessment tools. Overview of the complexities, uncertainties, and physical, chemical, and biological issues relevant to risk assessment. Lab projects. Recommended: MATH 51. Apply at first class for admission.

CEE 178
Introduction to Human Exposure Analysis (CEE 276)
GER:DB-EngrAppSci, WAY-AQR, WAY-SMA

(Graduate students register for 276.) Scientific and engineering issues involved in quantifying human exposure to toxic chemicals in the environment. Pollutant behavior, inhalation exposure, dermal exposure, and assessment tools. Overview of the complexities, uncertainties, and physical, chemical, and biological issues relevant to risk assessment. Lab projects. Recommended: MATH 51. Apply at first class for admission.

CEE 179A
Water Chemistry Laboratory (CEE 273A)
WAY-SMA

(Graduate students register for 273A.) Laboratory application of techniques for the analysis of natural and contaminated waters, emphasizing instrumental techniques

CEE 6
Physics of Cities (URBANST 109)
WAY-SMA

An introduction to the modern study of complex systems with cities as an organizing focus. Topics will include: cities as interacting systems; cities as networks; flows of resources and information through cities; principles of organization, self-organization, and complexity; how the properties of cities scale with size; and human movement patterns. No particular scientific background is required, but comfort with basic mathematics will be assumed. Prerequisites: MATH 19 and 20, or the equivalent

CEE 6
Physics of Cities (URBANST 109)
WAY-SMA

An introduction to the modern study of complex systems with cities as an organizing focus. Topics will include: cities as interacting systems; cities as networks; flows of resources and information through cities; principles of organization, self-organization, and complexity; how the properties of cities scale with size; and human movement patterns. No particular scientific background is required, but comfort with basic mathematics will be assumed. Prerequisites: MATH 19 and 20, or the equivalent

CEE 6
Physics of Cities
WAY-SMA

An introduction to the modern study of complex systems with cities as an organizing focus. Topics will include: cities as interacting systems; cities as networks; flows of resources and information through cities; principles of organization, self-organization, and complexity; how the properties of cities scale with size; and human movement patterns. No particular scientific background is required, but comfort with basic mathematics will be assumed. Prerequisites: MATH 19 and 20, or the equivalent

CEE 6
Physics of Cities (URBANST 109)
WAY-SMA

An introduction to the modern study of complex systems with cities as an organizing focus. Topics will include: cities as interacting systems; cities as networks; flows of resources and information through cities; principles of organization, self-organization, and complexity; how the properties of cities scale with size; and human movement patterns. No particular scientific background is required, but comfort with basic mathematics will be assumed. Prerequisites: MATH 19 and 20, or the equivalent

CEE 63
Weather and Storms (CEE 263C)
GER: DB-NatSci, WAY-SMA

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.

CEE 63
Weather and Storms (CEE 263C)
GER: DB-NatSci, WAY-SMA

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.

CEE 63
Weather and Storms (CEE 263C)
GER: DB-NatSci, WAY-SMA

Daily and severe weather and global climate. Topics: structure and composition of the atmosphere, fog and cloud formation, rainfall, local winds, wind energy, global circulation, jet streams, high and low pressure systems, inversions, el Niño, la Niña, atmosphere/ocean interactions, fronts, cyclones, thunderstorms, lightning, tornadoes, hurricanes, pollutant transport, global climate and atmospheric optics.

CEE 64
Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)
GER: DB-NatSci, WAY-SMA

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci

CEE 64
Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)
GER: DB-NatSci, WAY-SMA

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci

CEE 64
Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)
GER: DB-NatSci, WAY-SMA

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci

CEE 70Q
The Food, Water, and Waste Nexus
WAY-SMA

This course will explore the connections between water access, fecal waste management, and food safety and provision in low- and middle-income countries. The interconnections between food, water, and waste will be discussed as it relates to human health and well-being. Topics that will be covered in the course include 1) farm to fork contamination pathways of food 2) food hygiene practices and barriers to implementation 3) waste water reuse practices 4) management of water for multiple uses 5) potential impact climate change may have on the connections of these systems. The students in the course will undertake individual research that explores the connections between these systems and identifies potential strategies to improve human health and well-being.

Pages