Explore Scientific Method and Analysis (SMA) WAYS Courses

Ways of Thinking/Ways of Doing

Titlesort descending Requirements
COMPMED 81Q
Aardvarks to Zebras: The A to Z of Animal Anatomy
GER: DB-NatSci, WAY-SMA

Preference to sophomores.Ever wonder what cats and narwhals have in common? Maybe you haven't, but despite their seemingly different lifestyles and habitats (i.e. sleeping on couches versus swimming in oceans), they are both mammals! In this seminar, students will gain an appreciation for basic mammalian anatomic and physiologic principles that span across multiple species while emphasizing key differences that render each species unique. Through student projects, we will explore evolutionary adaptations that have driven the success of a variety of species within the context of their natural environments. In addition to a weekly lecture, weekly laboratory sessions will reinforce anatomic principles through a combination of rodent cadaver dissection, organ and bone specimens, and use of virtual reality demonstrations. Furthermore, students will have the opportunity to visit Año Nuevo State Park to experience a guided viewing of northern elephant seals within their natural habitat. Students with a passion for science will gain a fundamental understanding of anatomy that is applicable to future careers in medicine, biomedical research, veterinary medicine, and ecology/conservation.

PSYC 83
Addictions in our World: From Physiology to Human Behavior
WAY-SI, WAY-SMA

Addiction is a powerful brain-based behavioral disorder that interferes with many lives. The National Survey on Drug Use and Health has estimated 21.5 million Americans aged 12 and older are classified as having a substance use disorder, an extraordinary 8.1% of the population. The field of mental health is advancing the understanding of this disorder through research, education, innovation and policy guidance. This class aims to help students better understand the struggles of addiction in our world by discussing many components involved in the disease including: physiology, psychology, treatment options, and the societal implications of addiction.nnStudents will engage in thought-provoking between psychology, neuroscience, and society. They will develop the knowledge-base and framework to critically evaluate the science behind addiction and how to apply this knowledge to address the addiction epidemic in our world. As technology advances, many new types of addiction are emerging, creating an additional urgent need to discuss the implications this burgeoning problem. This highly interactive seminar aims to engage the students in critical thinking didactics, activities and discussions that shape their understanding of the complexity inherent to the issues surrounding addiction, and increase the student¿s ability to more critically assimilate and interrogate information.

PSYC 83
Addictions in our World: From Physiology to Human Behavior
WAY-SI, WAY-SMA

Addiction is a powerful brain-based behavioral disorder that interferes with many lives. The National Survey on Drug Use and Health has estimated 21.5 million Americans aged 12 and older are classified as having a substance use disorder, an extraordinary 8.1% of the population. The field of mental health is advancing the understanding of this disorder through research, education, innovation and policy guidance. This class aims to help students better understand the struggles of addiction in our world by discussing many components involved in the disease including: physiology, psychology, treatment options, and the societal implications of addiction.nnStudents will engage in thought-provoking between psychology, neuroscience, and society. They will develop the knowledge-base and framework to critically evaluate the science behind addiction and how to apply this knowledge to address the addiction epidemic in our world. As technology advances, many new types of addiction are emerging, creating an additional urgent need to discuss the implications this burgeoning problem. This highly interactive seminar aims to engage the students in critical thinking didactics, activities and discussions that shape their understanding of the complexity inherent to the issues surrounding addiction, and increase the student¿s ability to more critically assimilate and interrogate information.

PSYC 83
Addictions in our World: From Physiology to Human Behavior
WAY-SI, WAY-SMA

Addiction is a powerful brain-based behavioral disorder that interferes with many lives. The National Survey on Drug Use and Health has estimated 21.5 million Americans aged 12 and older are classified as having a substance use disorder, an extraordinary 8.1% of the population. The field of mental health is advancing the understanding of this disorder through research, education, innovation and policy guidance. This class aims to help students better understand the struggles of addiction in our world by discussing many components involved in the disease including: physiology, psychology, treatment options, and the societal implications of addiction.nnStudents will engage in thought-provoking between psychology, neuroscience, and society. They will develop the knowledge-base and framework to critically evaluate the science behind addiction and how to apply this knowledge to address the addiction epidemic in our world. As technology advances, many new types of addiction are emerging, creating an additional urgent need to discuss the implications this burgeoning problem. This highly interactive seminar aims to engage the students in critical thinking didactics, activities and discussions that shape their understanding of the complexity inherent to the issues surrounding addiction, and increase the student¿s ability to more critically assimilate and interrogate information.

OSPPARIS 163
Advanced Biochemistry
WAY-SMA

Examine the biochemical bases of fundamental regulatory processes at the protein/enzyme level. Prerequisites: BIO 41 or HUMBIO 2A/3A or permission of instructor.

PHYSICS 110
Advanced Mechanics (PHYSICS 210)
GER: DB-NatSci, WAY-FR, WAY-SMA

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111, and PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite: PHYSICS 130.

PHYSICS 110
Advanced Mechanics (PHYSICS 210)
GER: DB-NatSci, WAY-FR, WAY-SMA

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111, and PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite: PHYSICS 130.

PHYSICS 110
Advanced Mechanics (PHYSICS 210)
GER: DB-NatSci, WAY-FR, WAY-SMA

Lagrangian and Hamiltonian mechanics. Principle of least action, Euler-Lagrange equations. Small oscillations and beyond. Symmetries, canonical transformations, Hamilton-Jacobi theory, action-angle variables. Introduction to classical field theory. Selected other topics, including nonlinear dynamical systems, attractors, chaotic motion. Undergraduates register for Physics 110 (4 units). Graduates register for Physics 210 (3 units). Prerequisites: MATH 131P or PHYSICS 111, and PHYSICS 112 or MATH elective 104 or higher. Recommended prerequisite: PHYSICS 130.

PHYSICS 108
Advanced Physics Laboratory: Project
WAY-AQR, WAY-SMA

Have you ever gotten to come up with a scientific question you'd like to explore, then worked with a small group to plan, design, build, and carry out an experiment to pursue this? Most projects pursued (drawn from condensed matter or particle physics) have never before been done in the class. This is an accelerated, guided "simulation" of real frontier experimental research. We provide substantial resources to help your team. Prerequisites PHYSICS 105, PHYSICS 107. PHYSICS 130 preferred.

PHYSICS 108
Advanced Physics Laboratory: Project
WAY-AQR, WAY-SMA

Have you ever gotten to come up with a scientific question you'd like to explore, then worked with a small group to plan, design, build, and carry out an experiment to pursue this? Most projects pursued (drawn from condensed matter or particle physics) have never before been done in the class. This is an accelerated, guided "simulation" of real frontier experimental research. We provide substantial resources to help your team. Prerequisites PHYSICS 105, PHYSICS 107. PHYSICS 130 preferred.

PHYSICS 108
Advanced Physics Laboratory: Project
WAY-AQR, WAY-SMA

Small student groups plan, design, build, and carry out a single experimental project in low-temperature physics. Prerequisites PHYSICS 105, PHYSICS 107.

BIOC 109B
Advances in Therapeutic Development: Neuronal Signaling and Immunology (BIO 109B)
GER: DB-NatSci, WAY-SMA

This is a seminar course focused on teaching students about novel research and applications in the fields of neuroscience and immunology. The course will cover topics that range from the neuronal pathways in opioid addiction and the mechanics of pain, to advances in immunotherapy. Students will engage with diverse material from leading neuroscience and cancer immunotherapy experts in the Bay Area. Guest lecturers will visit from both academia and neighboring pharmaceutical/biotechnology companies. Active participation is required. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program, but not both.

BIO 109B
Advances in Therapeutic Development: Neuronal Signaling and Immunology (BIOC 109B)
GER: DB-NatSci, WAY-SMA

This is a seminar course focused on teaching students about novel research and applications in the fields of neuroscience and immunology. The course will cover topics that range from the neuronal pathways in opioid addiction and the mechanics of pain, to advances in immunotherapy. Students will engage with diverse material from leading neuroscience and cancer immunotherapy experts in the Bay Area. Guest lecturers will visit from both academia and neighboring pharmaceutical/biotechnology companies. Active participation is required. Prerequisite: Biology or Human Biology core. Students with a major, minor or coterm in Biology: 109A/209A or 109B/209B may count toward degree program, but not both.

CEE 64
Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)
GER: DB-NatSci, WAY-SMA

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci

CEE 64
Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)
GER: DB-NatSci, WAY-SMA

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci

CEE 64
Air Pollution and Global Warming: History, Science, and Solutions (CEE 263D)
GER: DB-NatSci, WAY-SMA

Survey of Survey of air pollution and global warming and their renewable energy solutions. Topics: evolution of the Earth's atmosphere, history of discovery of chemicals in the air, bases and particles in urban smog, visibility, indoor air pollution, acid rain, stratospheric and Antarctic ozone loss, the historic climate record, causes and effects of global warming, impacts of energy systems on pollution and climate, renewable energy solutions to air pollution and global warming. UG Reqs: GER: DBNatSci

OSPBER 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPBER 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPKYOTO 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPKYOTO 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

ENGR 40M
An Intro to Making: What is EE
GER:DB-EngrAppSci, WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPPARIS 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPPARIS 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

ENGR 40M
An Intro to Making: What is EE
GER:DB-EngrAppSci, WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPBER 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

ENGR 40M
An Intro to Making: What is EE
GER:DB-EngrAppSci, WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPKYOTO 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPPARIS 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPBER 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

ENGR 40M
An Intro to Making: What is EE
GER:DB-EngrAppSci, WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPKYOTO 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

OSPPARIS 40M
An Intro to Making: What is EE
WAY-SMA

Is a hands-on class where students learn to make stuff. Through the process of building, you are introduced to the basic areas of EE. Students build a "useless box" and learn about circuits, feedback, and programming hardware, a light display for your desk and bike and learn about coding, transforms, and LEDs, a solar charger and an EKG machine and learn about power, noise, feedback, more circuits, and safety. And you get to keep the toys you build. Prerequisite: CS 106A.

CHEM 134
Analytical Chemistry Laboratory
GER: DB-NatSci, WAY-AQR, WAY-SMA

Classical analysis methods, statistical analyses, chromatography, and spectroscopy will be covered with an emphasis upon quantitative measurements and data analysis. WIM course with full lab reports and oral communication. Concludes with student-developed quantitative project. Prerequisite: Chem 35

COMPMED 80N
Animal behavior: sex, death, and sometimes food!
WAY-SMA

Preference to freshman. Behavior is what makes animals special (thirsty plants don't walk to water), but why do animals behave the way they do? What does their behavior tell us about their inner lives, and about ourselves? What do lipstick and cuckoos and fireflies have in common? Why would nobody want to be a penguin? What do mice say to each other in their pee-mail? Learning how to think about questions like these gives us a unique perspective on the natural world. Format: Discussion and criticism of video examples, documentaries, and research papers. Topics: History and approaches to animal behavior; development of behavior, from genetics to learning; mechanisms of behavior, from neurons to motivation; function of behavior, from honest signals to selfish genes; the phylogeny of behavior, from domestication to speciation; and modern applications of behavior, from abnormal behavior, to conservation, to animal welfare, and animal consciousness.

COMPMED 80N
Animal behavior: sex, death, and sometimes food!
WAY-SMA

Preference to freshman. Behavior is what makes animals special (thirsty plants don't walk to water), but why do animals behave the way they do? What does their behavior tell us about their inner lives, and about ourselves? What do lipstick and cuckoos and fireflies have in common? Why would nobody want to be a penguin? What do mice say to each other in their pee-mail? Learning how to think about questions like these gives us a unique perspective on the natural world. Format: Discussion and criticism of video examples, documentaries, and research papers. Topics: History and approaches to animal behavior; development of behavior, from genetics to learning; mechanisms of behavior, from neurons to motivation; function of behavior, from honest signals to selfish genes; the phylogeny of behavior, from domestication to speciation; and modern applications of behavior, from abnormal behavior, to conservation, to animal welfare, and animal consciousness.

COMPMED 80N
Animal behavior: sex, death, and sometimes food!
WAY-SMA

Preference to freshman. Behavior is what makes animals special (thirsty plants don't walk to water), but why do animals behave the way they do? What does their behavior tell us about their inner lives, and about ourselves? What do lipstick and cuckoos and fireflies have in common? Why would nobody want to be a penguin? What do mice say to each other in their pee-mail? Learning how to think about questions like these gives us a unique perspective on the natural world. Format: Discussion and criticism of video examples, documentaries, and research papers. Topics: History and approaches to animal behavior; development of behavior, from genetics to learning; mechanisms of behavior, from neurons to motivation; function of behavior, from honest signals to selfish genes; the phylogeny of behavior, from domestication to speciation; and modern applications of behavior, from abnormal behavior, to conservation, to animal welfare, and animal consciousness.

CEE 177
Aquatic Chemistry and Biology
GER:DB-EngrAppSci, WAY-SMA

Introduction to chemical and biological processes in the aqueous environment. Basic aqueous equilibria; the structure, behavior, and fate of major classes of chemicals that dissolve in water; redox reactions; the biochemistry of aquatic microbial life; and biogeochemical processes that govern the fate of nutrients and metals in the environment and in engineered systems. Prerequisite: CHEM 31.

CEE 177
Aquatic Chemistry and Biology
GER:DB-EngrAppSci, WAY-SMA

Introduction to chemical and biological processes in the aqueous environment. Basic aqueous equilibria; the structure, behavior, and fate of major classes of chemicals that dissolve in water; redox reactions; the biochemistry of aquatic microbial life; and biogeochemical processes that govern the fate of nutrients and metals in the environment and in engineered systems. Prerequisite: CHEM 31.

ARCHLGY 126
Archaeobotany (ARCHLGY 226)
WAY-SMA

Archaeobotany, also known as paleoethnobotany, is the study of the interrelationships of plants and humans through the archaeological record. Knowledge and understanding of Archaeobotany sufficient to interpret, evaluate, and understand archaeobotanical data. Dominant approaches in the study of archaeobotanical remains: plant macro-remains, pollen, phytoliths, and starch grains in the identification of diet and environmental reconstruction.

ARCHLGY 126
Archaeobotany (ARCHLGY 226)
WAY-SMA

Archaeobotany, also known as paleoethnobotany, is the study of the interrelationships of plants and humans through the archaeological record. Knowledge and understanding of Archaeobotany sufficient to interpret, evaluate, and understand archaeobotanical data. Dominant approaches in the study of archaeobotanical remains: plant macro-remains, pollen, phytoliths, and starch grains in the identification of diet and environmental reconstruction.

PHYSICS 50
Astronomy Laboratory and Observational Astronomy
GER: DB-NatSci, WAY-AQR, WAY-SMA

Introduction to observational astronomy emphasizing the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with telescopes at the Stanford Student Observatory. Meets at the observatory one evening per week from dusk until well after dark, in addition to day-time lectures each week. No previous physics required. Limited enrollment.

PHYSICS 50
Astronomy Laboratory and Observational Astronomy
GER: DB-NatSci, WAY-AQR, WAY-SMA

Introduction to observational astronomy emphasizing the use of optical telescopes. Observations of stars, nebulae, and galaxies in laboratory sessions with telescopes at the Stanford Student Observatory. Meets at the observatory one evening per week from dusk until well after dark, in addition to day-time lectures each week. No previous physics required. Limited enrollment.

BIOHOPK 14
Bio-logging and Bio-telemetry
WAY-AQR, WAY-SMA

Bio-logging is a rapidly growing discipline that includes diverse fields such as consumer electronics, medicine, and marine biology. The use of animal-attached digital tags is a powerful approach to study the movement and ecology of individuals over a wide range of temporal and spatial scales. This course is an introduction to bio-logging methods and analysis. Using whales as a model system, students will learn how use multi-sensor tags to study behavioral biomechanics.

BIO 83
Biochemistry & Molecular Biology
WAY-SMA

Introduction to the molecular and biochemical basis of life. Lecture topics include the structure and function of proteins, nucleic acids, lipids and carbohydrates, energy metabolism, signal transduction, epigenetics and DNA repair. The course will also consider how defects in these processes cause disease. Prerequisites: None.

BIO 83
Biochemistry & Molecular Biology
WAY-SMA

Introduction to the molecular and biochemical basis of life. Lecture topics include the structure and function of proteins, nucleic acids, lipids and carbohydrates, energy metabolism, signal transduction, epigenetics and DNA repair. The course will also consider how defects in these processes cause disease. Prerequisites: None.

MATSCI 81N
Bioengineering Materials to Heal the Body
GER:DB-EngrAppSci, WAY-SMA

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.

MATSCI 81N
Bioengineering Materials to Heal the Body
GER:DB-EngrAppSci, WAY-SMA

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.

MATSCI 81N
Bioengineering Materials to Heal the Body
GER:DB-EngrAppSci, WAY-SMA

Preference to freshmen. Real-world examples of materials developed for tissue engineering and regenerative medicine therapies. How scientists and engineers design new materials for surgeons to use in replacing body parts such as damaged heart or spinal cord tissue. How cells interact with implanted materials. Students identify a clinically important disease or injury that requires a better material, proposed research approaches to the problem, and debate possible engineering solutions.

BIOE 123
Bioengineering Systems Prototyping Lab
WAY-SMA

The Bioengineering System Prototyping Laboratory is a fast-paced, team-based system engineering experience, in which teams of 2-3 students design and build a fermenter that meets a set of common requirements along with a set of unique team-determined requirements. Students learn-by-doing hands-on skills in electronics and mechanical design and fabrication. Teams also develop process skills and an engineering mindset by aligning specifications with requirements, developing output metrics and measuring performance, and creating project proposals and plans. The course culminates in demonstration of a fully functioning fermenter that meets the teams' self-determined metrics. n nLearning goals: 1) Design, fabricate, integrate, and characterize practical electronic and mechanical hardware systems that meet clear requirements in the context of Bioengineering (i.e., build something that works). 2) Use prototyping tools, techniques, and instruments, including: CAD, 3D printing, laser cutting, microcontrollers, and oscilloscopes. 3) Create quantitative system specifications and test measurement plans to demonstrate that a design meets user requirements. 4) Communicate design elements, choices, specifications, and performance through design reviews and written reports. 5) Collaborate as a team member on a complex system design project (e.g., a fermenter). n nLimited enrollment, with priority for Bioengineering undergraduates. Prerequisites: Physics 43, or equivalent. Experience with Matlab and/or Python is recommended.

ESS 151
Biological Oceanography (EARTHSYS 151, EARTHSYS 251, ESS 251)
WAY-SMA

Required for Earth Systems students in the oceans track. Interdisciplinary look at how oceanic environments control the form and function of marine life. Topics include distributions of planktonic production and abundance, nutrient cycling, the role of ocean biology in the climate system, expected effects of climate changes on ocean biology. Local weekend field trips. Designed to be taken concurrently with Marine Chemistry (ESS/EARTHSYS 152/252). Prerequisites: BIO 43 and ESS 8 or equivalent.

Pages